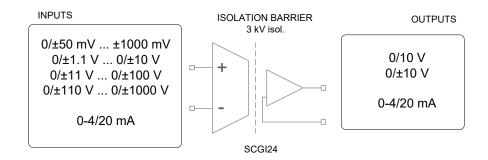


PRELIMINARY TECHNICAL INFORMATION

HIGHLIGHTS

- Shunt and voltage feedback isolation
- Voltage and current standard output values

specifically for use with our range of SCR controllers and firing boards.


- Easy mounting and set up on standard DIN rail
- Unipolar and bipolar signaling
- True RMS measurement

non-contractual photo

OVERVIEW

This galvanically isolated universal transducer is designed for sensors or measuring devices that operate with both bipolar (positive and negative) and unipolar signals. These voltage and current signals are galvanically isolated and converted into standardised analogue outputs. Configuration is simplified using DIP switches. It provides an efficient solution for galvanic isolation in standard 60 mV shunt current loops and voltage feedback signals,

TECHNICAL ESPECIFICATIONS

Description		Notes / Test Conditions	Min	Тур	Max	Units
Input supply voltage DC	V_{INDC}		20	24	250	V_{DC}
Input supply voltage AC	V _{IN AC}		20	230	250	V_{AC}
Power consumption	P_{N}				2.5	W
Protection degree				IP-20		
Combustibility class				UL94 V0		
Storaging temperature range	T _{stg}		-40		80	°C
Operating temperature range	T _{op}		-10		60	°C
Power to input isolation voltage	V_{ISOp-i}			1500		V _{AC}
Power to output isolation voltage	V _{ISOp-o}			1500		V _{AC}
Input to output isolation voltage	V _{ISOi-o}			3000		V _{AC}

Data at T_a = 25 °C, V_{IN} = 24 V_{DC} and rated values, unless otherwise indicated

CONFORMALS

CON CIMALO		
UL 94 Flammability rate	V0	
Electromagnetic compatibility	EMC 2014/30/EU	
Low voltage directive	DBT 2014/35/EU	
Interference immunity according to	EN 61000-6-2	CF
Disturbance emitions according to	EN 61000-6-3	

INPUT SIGNALS

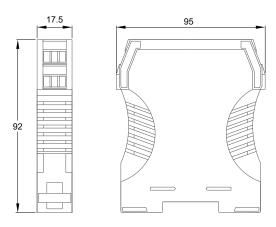
Description		Notes / Test Conditions	Min	Тур	Max	Units
Maximum current I1 input	I _{1 max}				500	mΑ
Admissible signal frequency	fs		0		800	Hz
I1 Input impedance	Z _{I1}			120		Ω
				0-20 n	nA	
Current input ranges available	I _{IN}			4-20 n	nA	
				0-5 m	Α	
Maximum voltage V1 input	V _{1 max}		-10		10	V
V1 Input impedance	Z_{v_1}			500		kΩ
Maximum voltage V2 input	V _{2 max}		-100		100	V
V2 Input impedance	Z_{v_2}			500		kΩ
Maximum voltage V3 input	$V_{_{3max}}$		-1000		1000	V
V3 Input impedance	Z_{V3}			1		МΩ
				0-1000	mV	
Voltago input rangos available	_		_	0-10	V	
Voltage input ranges available	•		0-100 V			
	-			0-1000) V	

OUTPUT SIGNAL

Description		Notes / Test Conditions	Min	Тур	Max	Units
Maximum voltage output	V_{OUTmax}		-12		12	V
Maximum output load	R _{LV OUT}		1.0			kΩ
Maximum current output	OUT max				25	mA
Maximum current output	R _{LI OUT}				500	Ω
Voltage output ranges available	V			0/±5 \	V	
Voltage output ranges available	V_{OUT}			0/±10	V	
Current output ranges available	1			0/20 m	nΑ	
Current output ranges available	'OUT			4/20 m	nΑ	

ACCURACY AND DYNAMIC PERFORMANCE DATA

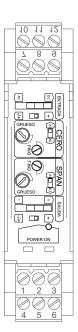
Description		Notes / Test Conditions	Min	Тур	Max	Units
Overall accuracy	X_{G}	T _a = +25 °C			0.3	%
Linearity	ε _L			0.1		%
Current termal drift	I _{OT}	$T_a = -10 \text{ to } +60 ^{\circ}\text{C}$		0.5		μΑ/ºΚ
Voltage termal drift	V_{OT}	$T_a = -10 \text{ to } +60 ^{\circ}\text{C}$		0.2		mV/ºK
Low-pass filter response time	t			50		me
Low-pass litter response time	D (10-90)			250		ms


CONNECTIONS

Description	Notes / Test Conditions Min		Тур	Max	Units
Device configuration	DIP switch & potentiometers				
Supply, input and output signals	Polarized plug connectors, with M3 screw				
Connectors fixing screw torque			0.5		Nm
Cable section		< 2.5 mm²,	12 AWG	250 V/1	2 A

MECHANICAL DIMENSIONS

Description		Units
Enclosure	92 x 95 x 17.5	mm
Fixations		
Weight (approx.)	100	gr



SCALE OFFSET AND OUTPUT RANGE ADJUST

On the frontal panel you can adjust the scale offset by means of the 2 potentiometers labeled as "CERO". An initial coarse adjust using "GRUESO" labeled 16 discreet step potentiometer, and a fine adjust with "FINO" labeled potentiometer. By applying the zero level input signal to the module, then it can be calibrated adjusting the output to zero.

In the same way you can adjust the span (full scale value) by means of the 2 potentiometers labeled as "SPAN" to precisely adjust the range of your input signal. By, for example, applying the full scale level input signal to the module, then it can be calibrated adjusting the output to follow precisely the input signal magnitude.

On this frontal can also be set the typo of input signal, between AC signal or DC signal, unipolar or bipolar and the kind of output signal between voltage output or current output and unipolar or bipolar signal.

Note:

Please let 5 min of working time to reach the thermal stabilization of the converter and measuring instrument before making any adjustments.

ELECTRICAL CONNECTIONS

DC POWER SUPPLY

Power Supply	Terminal Allocation				
24250 V (AC/DC) supply	[10]: "+/~"				
Z+200 V (AO/DO) supply	[12]: "-/~"				

INPUT SIGNALS

Measuring Function	Measuring Range Limits	Termina	I Allocation
	≤ ±1000 mV (V1)	[2] : "10V/mV"	
	> ±500 mV to ±10 V (V1)	[3] : "0V"	+ -
DC Voltage	> ±10 V to ±100 V (V2)	[1] : "100V"	900 123 123
DC Voltage	> ±10 V to ±100 V (V2)	[3] : "0V"	+ -
	> ±100 V to ±1000 V (V3)	[4] : "1000V"	
	> ±100 V to ±1000 V (V3)	[3] : "0V"	+ -
	0-4/20 mA (I1: active)	[6] : "+I"	
DC Current -	0-4/20 HIA (11. active)	[3] : "-l"	+
	0-4/20 mA (I2: passive)	[5] : "+1"	999
	0-4/20 IIIA (IZ. passive)	[6] : "-l"	+ -

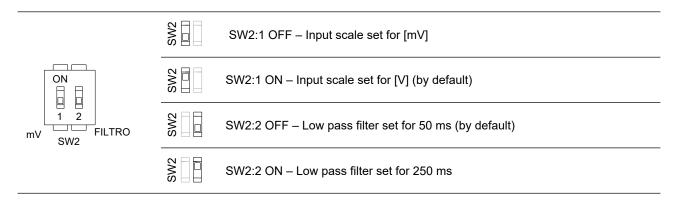
OUTPUT SIGNALS

Output Measure	Measuring Range Limits	Termir	nal Allocation
DC Voltage	0/10 V	[8] : "+V"	+ -
	0/±10 V	[9] : "-V"	
DC Current	0-4/20 mA	[8] : "+l"	+ -
DC Current	0-4/20 IIIA	[9] : "-I"	

INTERNAL CONFIGURATIONS

ACCESS TO INTERNAL CONFIGURATIONS

To access the internal configurations of the device, open the enclosure containing the PCB using a screwdriver or a sharp-edged tool to separate the two plastic parts of the casing (1) maintain both lateral side's tabs partially opened (or remove the DIN clip and spring) and then pull (2) vertical the PCA with its connectors block as is shown in the next image.


CURRENT OUTPUT DIP-SWITCH CONFIGURATION (SW1)

SW1 depicted on the image sets the 0 output for current output signal to 0 mA or 4 mA.

VOLTAGE INPUT SCALE & STABILIZATION LOW PASS FILTER DIP-SWITCH CONFIGURATION (SW2)

SW2 sets the voltage scale for voltage input signal, can be set to [mV] scale or [V] scale and also sets the filter level between 50 ms or 250 ms.

Note:

By default SCGI24 is factory calibrated for 4-20 mA input to 0-10 V output. Internal DIP switchs SW1: ON-OFF (4 mA), SW2: OFF-OFF (LF, mV). Other configurations available by demand.

Cost Effective Products

SEMICODE ELECTRONICA

Offers to the market a comprehensive range of products from recognized manufacturers at the best price/quality ratio, this products are provided with a basic reference code that allows maintaining the same product reference even if the original device manufacturer is replaced. SEMICODE product reference has to be considered as a generic brand.

Seeking the market needs and trends, we are constantly increasing the product portfolio with new products and suppliers, please ask for the updated information available to our local contacts.

SEMICODE products include semiconductors, passive components and accessories focused in power electronics market.

Datasheet Annotations:

SEMICODE ELECTRONICA annotate datasheets in the top left hard corner of the front page, to indicate product status. The annotations are as follows:

Tentative information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.

Advance Information: The product design is complete and final characterisation for volume production is well in hand.

No Annotation: The product parameters are fixed and the product is available to datasheet specification.

NOTICE: The technical data are to specify components, not to guarantee their properties. No warranty or guarantee expressed or implied is made regarding delivery or performance. The Company reserves the right to alter without prior notice the specification of any product. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.